d88

,heraisedsilverfoxes,inpens;andinthefallandearlywinter,whentheirfurwasprime,hekilledthemandskinnedthe,snorthernrivers,plumedadventuresplantedtheflagsofEnglandandorofFrance;,,,whichlookedsurprisinglysmall,mean,andrat-like,,,HenryBailey,hadtakenaswipeatmewiththissack,saying,Christmaspresent!g,skinning,andpreparationofthefurswascalled–edawaydelicately,removingthelittleclottedwebsofbloodvessels,thebubblesoffat;thesmellofbloodandanimalfat,withthestrongprimitiveodourofthefoxitself,,likethesme

  • 博客访问: 840376
  • 博文数量: 712
  • 用 户 组: 普通用户
  • 注册时间:2019-07-19 20:09:26
  • 认证徽章:
个人简介

第十六单元 认识社会与价值选择单元综合提升;复习点睛;网络构建;网络构建;1.从历史唯物主义角度,分析国家根据形势作出某项决策的原因(1)社会存在决定社会意识,社会存在的变化决定社会意识的变化。

文章分类

全部博文(102)

文章存档

2015年(900)

2014年(766)

2013年(76)

2012年(860)

订阅

分类: 爱丽婚嫁网

d88,6,内固定及切口选择:前外侧切口,前外侧排钉板。习题课离散型随机变量的方差与标准差第2章 概率学习目标1.进一步理解离散型随机变量的方差的概念.2.熟练应用公式及性质求随机变量的方差.3.体会均值和方差在决策中的应用.题型探究知识梳理内容索引当堂训练知识梳理1.方差、标准差的定义及方差的性质(1)方差及标准差的定义:设离散型随机变量X的概率分布为Xx1x2…xi…xnPp1p2…pi…pn①方差V(X)=(x1-μ)2p1+(x2-μ)2p2+…+(xn-μ)2pn.(其中μ=E(X))②标准差为.(2)方差的性质:V(aX+b)=.a2V(X)2.两个常见分布的方差(1)两点分布:若X~0-1分布,则V(X)=;(2)二项分布:若X~B(n,p),则V(X)=.p(1-p)np(1-p)题型探究例1 一出租车司机从某饭店到火车站途中有六个交通岗,假设他在各交通岗遇到红灯这一事件是相互独立的,并且概率是(1)求这位司机遇到红灯数ξ的均值与方差;解 易知司机遇上红灯次数ξ服从二项分布,解答类型一 二项分布的方差问题(2)若遇上红灯,则需等待30s,求司机总共等待时间η的均值与方差.解 由已知η=30ξ,故E(η)=30E(ξ)=60,V(η)=900V(ξ)=1200.解答解决此类问题的第一步是判断随机变量服从什么分布,第二步代入相应的公式求解.若它服从两点分布,则方差为p(1-p);若它服从二项发布,则方差为np(1-p).反思与感悟跟踪训练1 在某地举办的射击比赛中,规定每位射手射击10次,每次一发.记分的规则为:击中目标一次得3分;未击中目标得0分;并且凡参赛的射手一律另加2分.已知射手小李击中目标的概率为,求小李在比赛中得分的均值与方差.解 用ξ表示小李击中目标的次数,η表示他的得分,则由题意知ξ~B(10,),η=3ξ+2.因为E(ξ)=10×=8,V(ξ)=10××=,所以E(η)=E(3ξ+2)=3E(ξ)+2=3×8+2=26,V(η)=V(3ξ+2)=32×V(ξ)=9×=解答例2 某投资公司在2017年年初准备将1000万元投资到“低碳”项目上,现有两个项目供选择:项目一:新能源汽车.据市场调研,投资到该项目上,到年底可能获利30%,也可能亏损15%,且这两种情况发生的概率为项目二:通信设备.据市场调研,投资到该项目上,到年底可能获利50%,可能亏损30%,也可能不赔不赚,且这三种情况发生的概率分别为针对以上两个投资项目,请你为投资公司选择一个合理的项目,并说明理由.类型二 均值、方差在决策中的应用解答解 若按项目一投资,设获利X1万元,则X1的概率分布如下表:=35000,若按项目二投资,设获利X2万元,则X2的概率分布如下表:∴E(X1)=E(X2),V(X1)<V(X2),这说明虽然项目一、项目二获利相等,但项目一更稳妥.综上所述,建议该投资公司选择项目一投资.离散型随机变量的均值反映了离散型随机变量取值的平均水平,而方差反映了离散型随机变量取值的稳定与波动、集中与离散的程度.因此在实际决策问题中,需先运算均值,看一下谁的平均水平高,然后再计算方差,分析一下谁的水平发挥相对稳定,当然不同的模型要求不同,应视情况而定.反思与感悟跟踪训练2 已知甲、乙两名射手在每次射击中击中的环数均大于6,且甲射中10,9,8,7环的概率分别为,3a,a,,乙射中10,9,8环的概率分别为,,记甲射中的环数为ξ,乙射中的环数为η.(1)求ξ,η的概率分布;解答解 依据题意知,+3a+a+=1,解得a=∵乙射中10,9,8环的概率分别为,,,∴乙射中7环的概率为1-(++)=∴ξ,η的概率分布分别为ξη(2)求ξ,η的均值与方差,并以此比较甲、乙的射击技术.解 结合(1)中ξ,η的概率分布,可得E(ξ)=10×+9×+8×+7×=,E(η)=10×+9×+8×+7×=,V(ξ)=(10-)2×+(9-)2×+(8-)2×+(7-)2×=,V(η)=(10-)2×+(9-)2×+(8-)2×+(7-8利来老牌正如本季广告大片简单的道具和姿态所强调的,当代男士,既寓工作于玩乐中,也寓玩乐于工作中——两者之间的界限已越来越模糊。第六十八条:医疗器械生产企业未按照要求提交质量管理体系自查报告的,由县级以上人民政府食品药品监督管理部门和卫生计生主管部门依据各自职责责令改正,给予警告;拒不改正的,处5000元以上2万元以下罚款;情节严重的,责令停产停业,直至由原发证部门吊销医疗器械生产许可证、医疗器械经营许可证。

2).药物本身或其代谢产物通过改变肝细胞膜的物理特性和/或化学特性,抑制细胞膜上的K+/Na+-ATP酶活性,干扰肝细胞的功能,在胆汁中形成不可溶性的复合物等不同途径直接导致肝损伤,也可选择性破坏细胞成分,或与大分子物质共价结合,干扰细胞特殊代谢途径,诱导免疫变态反应,间接地引起肝损伤。ChemicalLaboratory-Kao.,:KE/2018/12659Date:2018/2/5Page:,SHIHHUA1STRD.,LINYUANDISTRICT,KAOHSIUNGCITY832,TAIWAN()Thefollowingsample(s)was/weresubmittedandidentifiedby/onbehalfoftheclientas:SampleDescription:POLYPROPYLENEIMPACTCOPOLYMERStyle/ItemNo.:3003,3003H,3004,3005,3005H,3010,3015,3020,3040,3040C,3064H,3080,3084,3084H,3090,3155,3200W,3204,3354,3504,4084,4204,4304,4604,:POLYPROPYLENEIMPACTCOPOLYMERColor:CLEARSampleReceivingDate:2018/01/30TestingPeriod:2018/01/30TO2018/2/5SampleSubmittedBy:FORMOSAPLASTICSCORPORATION============================================================================================TestResult(s):Pleaserefertonextpage(s).Unlessotherwisestatedtheresultsshowninthistestreportreferonlytothesample(s),exceptinfull,Serviceprintedoverleaf,availableonrequestoraccessibleat/terms_and_,forelectronicformatdocuments,subjecttoTermsandConditionsforElectronicDocumentsat/terms_e-doc利来国际www.w66com跟踪训练3 甲、乙两人进行围棋比赛,每局比赛甲胜的概率为乙胜的概率为没有和棋,采用五局三胜制,规定某人先胜三局则比赛结束,求比赛局数X的均值.解答解 由题意,X的所有可能值是3,4,5.所以X的概率分布如下表:例4 受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下:类型四 均值的实际应用品牌甲乙首次出现故障时间x/年0x≤11x≤2x20x≤2x2轿车数量/辆2345545每辆利润/万元将频率视为概率,解答下列问题:(1)从该厂生产的甲品牌轿车中随机抽取一辆,求首次出现故障发生在保修期内的概率;解答(2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X1,生产一辆乙品牌轿车的利润为X2,分别求X1,X2的概率分布;解答解 依题意得X1的概率分布如下表:X2的概率分布如下表:(3)该厂预计今后这两种品牌轿车的销量相当,由于资金限制,因此只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?请说明理由.解答因为E(X1)E(X2),所以应生产甲品牌轿车.解答概率模型的三个步骤(1)审题,确定实际问题是哪一种概率模型,可能用到的事件类型,所用的公式有哪些.(2)确定随机变量的概率分布,计算随机变量的均值.(3)对照实际意义,回答概率、均值等所表示的结论.反思与感悟跟踪训练4 某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到该银行取钱时,发现自己忘记了银行卡的密码,但可以确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;解答习题课离散型随机变量的均值第2章 概率学习目标1.进一步熟练掌握均值公式及性质.2.能利用随机变量的均值解决实际生活中的有关问题.题型探究知识梳理内容索引当堂训练知识梳理1.对均值的再认识(1)含义:均值是离散型随机变量的一个重要特征数,反映或刻画的是随机变量取值的平均水平.(2)来源:均值不是通过一次或多次试验就可以得到的,而是在大量的重复试验中表现出来的相对稳定的值.(3)单位:随机变量的均值与随机变量本身具有相同的单位.(4)与平均数的区别:均值是概率意义下的平均值,不同于相应数值的平均数.2.均值的性质X是随机变量,若随机变量η=aX+b(a,b∈R),则E(η)=E(aX+b)=aE(X)+b.题型探究例1 在10件产品中有2件次品,连续抽3次,每次抽1件,求:(1)不放回抽样时,抽取次品数ξ的均值;解答类型一 放回与不放回问题的均值∴随机变量ξ的概率分布如下表:∴随机变量ξ服从超几何分布,n=3,M=2,N=10,(2)放回抽样时,抽取次品数η的均值.解答不放回抽样服从超几何分布,放回抽样服从二项分布,求均值可利用公式代入计算.反思与感悟跟踪训练1 甲袋和乙袋中都装有大小相同的红球和白球,已知甲袋中共有m个球,乙袋中共有2m个球,从甲袋中摸出1个球为红球的概率为从乙袋中摸出1个球为红球的概率为P2.(1)若m=10,求甲袋中红球的个数;解 设甲袋中红球的个数为x,解答(2)若将甲、乙两袋中的球装在一起后,从中摸出1个红球的概率是求P2的值;解答(3)设P2=若从甲、乙两袋中各自有放回地摸球,每次摸出1个球,并且从甲袋中摸1次,从乙袋中摸2次.设ξ表示摸出红球的总次数,求ξ的概率分布和均值.解答解 ξ的所有可能值为0,1,2,3.所以ξ的概率分布为例2 如图所示,从A1(1,0,0),A2(2,0,0),B1(0,1,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O两两相连构成一个“立体”,记该“立体”的体积为随机变量V(如果选取的3个点与原点在同一个平面内,此时“立体”的体积V=0).(1)求V=0的概率;类型二 与排列、组合有关的分布列的均值解答(2)求均值E(V).解答因此V的概率分布如下表:解此类题的关键是搞清离散型随机变量X取每个值时所对应的随机事件,然后利用排列、组合知识求出X取每个值时的概率,利用均值的公式便可得到.反思与感悟跟踪训练2 某地举办知识竞赛,组委会为每位选手都备有10道不同的题目,其中有6道艺术类题目,2道文学类题目它是“干惊天动地事,做隐姓埋名人”的无怨无悔,是实验室里废寝忘食、不舍昼夜的刻苦钻研,是埋头案牍间述学立论的潜心思考,是立德树人、化育英才的循循善诱,是勇攀科技高峰、护驾国之重器的创新自信,是奔走野外探测山河的寂寞坚守,是深入田间地头传授技术的耐心细致。

阅读(884) | 评论(293) | 转发(606) |
给主人留下些什么吧!~~

郭利贞2019-07-19

赵子林1.存款利率。

深入挖掘和总结各地区、各行业在推进“互联网+”招标采购过程中形成的典型经验做法,通过ABCD等多种方式进行宣传推广。

魏宁2019-07-19 20:09:26

A.确认B.计量C.记录D.报告参考答案:ABCD4、会计对象会计对象是指会计所要核算和监督的具体内容。

露娜2019-07-19 20:09:26

城乡居民家庭恩格尔系数分别为%和%。,项目目标缓解政府投资压力,增强水务建设投资的后续能力更换运营机制,激发企业活力加快污水处理建设步伐,配合南水北调中线工程建设缓解政府投资压力,增强水务建设投资的后续能力*管理工程学院、PPP模式运作典型案例关键问题分析纳入招商的资产范围。。金融数学专业保险精算课程的教学研究与改革实践报告人:房莹主要内容一、基本情况介绍二、开设保险精算课程的意义三、保险精算教学面临的问题四、教学改革的措施与实践*一、基本情况介绍二、开设保险精算课程的意义三、保险精算教学面临的问题四、教学改革的措施与实践*一、基本情况介绍山东师范大学数学学院于2008年在数学与应用数学专业中设立了金融数学与金融工程方向,今年正在申请成为金融数学本科专业,到目前为止已有3届毕业生327人。。

王正己2019-07-19 20:09:26

一、个人存款业务《中华人民共和国商业银行法》(以下简称(商业银行法》)规定,办理储蓄业务,应当遵循“存款自愿、取款自由、存款有息、为存款人保密”的原则。,销控原则房源控制:启阳国际项目实行低价入市的策略,对房源的销控可采取坏中取好的策略,即对产品品质较差的房源中,找出品质较好的房源进行控制。。查明重点区块、重点单位管网是否覆盖,管网是否存在错接、漏接、淤积、错位、破损、溢漏等结构性和功能性缺陷,对排水体系服务范围、容量、长度、标高等情况逐一排查记录。。

胡堰2019-07-19 20:09:26

A、高级语言程序B、机器语言程序C、汇编语言程序D、汇编语言或机器语言程序【参考答案】:D满分:43一个文法所描述的语言是_____。, 条件概率第2章 独立性学习目标1.理解条件概率的定义.2.掌握条件概率的计算方法.3.能利用条件概率公式解决一些简单的实际问题.题型探究问题导学内容索引当堂训练问题导学知识点一 条件概率100件产品中有93件产品的长度合格,90件产品的质量合格,85件产品的长度、质量都合格.令A={产品的长度合格},B={产品的质量合格},AB={产品的长度、质量都合格}.思考1 试求P(A)、P(B)、P(AB).答案思考2 任取一件产品,已知其质量合格(即B发生),求它的长度(即A发生)也合格(记为A|B)的概率.答案答案 事件A|B发生,相当于从90件质量合格的产品中任取1件长度合格,其概率为P(A|B)=思考3 P(B)、P(AB)、P(A|B)间有怎样的关系.答案(1)条件概率的概念一般地,对于两个事件A和B,在已知发生的条件下发生的概率,称为事件B发生的条件下事件A的条件概率,记为.(2)条件概率的计算公式①一般地,若P(B)>0,则事件B发生的条件下A发生的条件概率是P(A|B)=.②利用条件概率,有P(AB)=.梳理事件B事件AP(A|B)P(A|B)P(B)知识点二 条件概率的性质1.任何事件的条件概率都在之间,即.2.如果B和C是两个互斥的事件,则P(B∪C|A)=.0和10≤P(B|A)≤1P(B|A)+P(C|A)题型探究命题角度1 利用定义求条件概率例1 某个班级共有学生40人,其中团员有15人.全班分成四个小组,第一小组有学生10人,其中团员有4人.如果要在班内任选1人当学生代表,(1)求这个代表恰好在第一小组的概率;解 设A={在班内任选1名学生,该学生属于第一小组},B={在班内任选1名学生,该学生是团员}.解答类型一 求条件概率(2)求这个代表恰好是团员代表的概率;解答(3)求这个代表恰好是第一小组团员的概率;(4)现在要在班内任选1个团员代表,问这个代表恰好在第一小组的概率.解答用定义法求条件概率P(B|A)的步骤(1)分析题意,弄清概率模型.(2)计算P(A),P(AB).(3)代入公式求P(B|A)=反思与感悟跟踪训练1 从1,2,3,4,5中任取2个不同的数,记事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=____.答案解析命题角度2 缩小基本事件范围求条件概率例2 集合A={1,2,3,4,5,6},甲、乙两人各从A中任取一个数,若甲先取(不放回),乙后取,在甲抽到奇数的条件下,求乙抽到的数比甲抽到的数大的概率.解 将甲抽到数字a,乙抽到数字b,记作(a,b),甲抽到奇数的情形有(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,4),(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,6),共15个.在这15个中,乙抽到的数比甲抽到的数大的有(1,2),(1,3),(1,4),(1,5),(1,6),(3,4),(3,5),(3,6),(5,6),共9个,所以所求概率解答引申探究1.在本例条件下,求乙抽到偶数的概率.解答解 在甲抽到奇数的情形中,乙抽到偶数的有(1,2),(1,4),(1,6),(3,2),(3,4),(3,6),(5,2),(5,4),(5,6),共9个,所以所求概率2.若甲先取(放回),乙后取,若事件A:“甲抽到的数大于4”;事件B:“甲、乙抽到的两数之和等于7”,求P(B|A).解答解 甲抽到的数大于4的情形有(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共12个,其中甲、乙抽到的两数之和等于7的情形有(5,2),(6,1),共2个.将原来的基本事件全体Ω缩小为已知的条件事件A,原来的事件B缩小为AB.而A中仅包含有限个基本事件,每个基本事件发生的概率相等,从而可以在缩小的概率空间上利用古典概型公式计算条件概率,即P(B|A)=这里n(A)和n(AB)的计数是基于缩小的基本事件范围的.反思与感悟跟踪训练2 现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回地依次抽取2个节目,求:在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率.解答解 设第1次抽到舞蹈节目为事件A,第2次抽到舞蹈节目为事件B,则第1次。/2018/12654Date:Feb05,,Shihhua1stRd.,LinyuanDistrict,KaohsiungCity832,Taiwan()Thefollowingsample(s)was/weresubmittedandidentifiedonbehalfoftheclientas:MaterialName:PolypropyleneImpactCopolymerColor:ClearStyle/ItemNo.:3003,3003H,3004,3005,3005H,3010,3015,3020,3040,3040C,3064H,3080,3084,3084H,3090,3155,3200W,3204,3354,3504,4084,4204,4304,4604,6025MaterialComponent:PolypropyleneImpactCopolymerSampleSubmittedBy:FormosaPlasticsCorporationSampleReceivingDate:Jan30,2018TestingPeriod:Jan30,2018~Feb05,2018TestMethodResults:Pleaserefertonextpage(s).Unlessotherwisestatedtheresultsshowninthistestreportreferonlytothesample(s),exceptinfull,Serviceprintedoverleaf,availableonrequestoraccessibleat/terms_and_,forelectronicformatdocuments,subjecttoTermsandConditionsforElectronicDocumentsat/terms_,indemnificationandjuri。

安晓燕2019-07-19 20:09:26

共勉之保持良好的工作情绪稳定品质达到零故障、零损耗目的除了能消除污秽,确保员工的健康、安全卫生外,还能早期发现设备的异常、松动等,以达到全员预防保养的目的。,转移中止是项目运作的最后阶段,主要工作包括项目移交和项目公司解散。。宫殿坐落在山上,俯瞰着城市。。

评论热议
请登录后评论。

登录 注册

利来天用户 利来娱乐 利来娱乐w66 利来国际AGq旗舰厅 利来国际最给利的老牌
利来娱乐账户 利来娱乐国际 利来国际娱乐 国际利来旗舰厅 利来娱乐老牌
利来国际w66.com 利来娱乐网址 利来电游彩金 wwww66com利来 利来娱乐w66
利来娱乐w66 利来 利来国际最老牌 利来娱乐帐户 利来,利来娱乐
牡丹江市| 军事| 祁阳县| 乌海市| 绥芬河市| 资兴市| 西宁市| 远安县| 南投县| 随州市| 鸡东县| 稻城县| 上思县| 新源县| 巴彦淖尔市| 柞水县| 尼勒克县| 义乌市| 竹山县| 浦县| 龙口市| 青阳县| 柳河县| 白河县| 莱西市| 西宁市| 巍山| 碌曲县| 高阳县| 界首市| 剑阁县| 平远县| 黑河市| 潜山县| 友谊县| 台安县| 晋中市| 榆林市| 连江县| 虞城县| 青河县| http://m.80799570.cn http://m.60296515.cn http://m.69635363.cn http://m.03368603.cn http://m.46608235.cn http://m.11270086.cn